[image:]

Data Engineering Guide

Delta Live Tables Multi-Pipeline Architecture Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team

	Department
	Mastech Digital - Data & Analytics

Table of Contents
[Executive Summary](#1-executive-summary)
[Architecture Patterns](#2-architecture-patterns)
[Pipeline Decomposition](#3-pipeline-decomposition)
[Inter-Pipeline Dependencies](#4-inter-pipeline-dependencies)
[Orchestration Strategies](#5-orchestration-strategies)
[Data Contracts](#6-data-contracts)
[Shared Components](#7-shared-components)
[Error Handling Across Pipelines](#8-error-handling-across-pipelines)
[Deployment Patterns](#9-deployment-patterns)
[Monitoring Multi-Pipeline Systems](#10-monitoring-multi-pipeline-systems)
[Scaling Patterns](#11-scaling-patterns)
[Case Studies](#12-case-studies)
1. Executive Summary
1.1 Purpose and Scope
As data platforms grow, single monolithic pipelines become difficult to maintain, scale, and troubleshoot. This guide provides architectural patterns for building systems of interconnected DLT pipelines that are modular, scalable, and maintainable.
1.2 When to Use Multi-Pipeline Architecture
	Scenario
	Single Pipeline
	Multiple Pipelines

	Small data volume (<100GB)
	Recommended
	Unnecessary

	Single team ownership
	Recommended
	Optional

	Multiple teams
	Challenging
	Recommended

	Different SLAs
	Limited
	Recommended

	Independent scaling
	Not possible
	Supported

	Failure isolation
	Not possible
	Supported

1.3 Benefits of Multi-Pipeline Architecture
┌───┐
│ MULTI-PIPELINE BENEFITS │
├───┤
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ MODULARITY │ │ SCALABILITY │ │ RESILIENCE │ │
│ │ │ │ │ │ │ │
│ │ • Team ownership│ │ • Independent │ │ • Failure │ │
│ │ • Clear bounds │ │ scaling │ │ isolation │ │
│ │ • Reusability │ │ • Resource │ │ • Independent │ │
│ │ │ │ optimization │ │ recovery │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ MAINTAINABILITY│ │ FLEXIBILITY │ │ GOVERNANCE │ │
│ │ │ │ │ │ │ │
│ │ • Smaller │ │ • Different │ │ • Clear data │ │
│ │ codebases │ │ schedules │ │ ownership │ │
│ │ • Easier │ │ • Mix of batch │ │ • Access │ │
│ │ debugging │ │ and streaming │ │ control │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
│ │
└───┘
2. Architecture Patterns
2.1 Hub and Spoke Pattern
Central ingestion pipeline feeds multiple domain pipelines:
┌───┐
│ HUB AND SPOKE PATTERN │
├───┤
│ │
│ ┌─────────────────┐ │
│ │ Domain A │ │
│ │ Pipeline │ │
│ └────────▲────────┘ │
│ │ │
│ ┌─────────────┐ ┌───────┴───────┐ ┌─────────────┐ │
│ │ Source │ │ │ │ Domain B │ │
│ │ Systems │ ─────▶ │ Ingestion │ ─────▶ │ Pipeline │ │
│ │ │ │ Hub (Bronze)│ │ │ │
│ └─────────────┘ └───────┬───────┘ └─────────────┘ │
│ │ │
│ ┌────────▼────────┐ │
│ │ Domain C │ │
│ │ Pipeline │ │
│ └─────────────────┘ │
│ │
│ Characteristics: │
│ • Centralized ingestion │
│ • Domain-specific transformations │
│ • Clear data ownership │
│ │
└───┘
Implementation:
Hub Pipeline: Centralized Ingestion
pipeline: ingestion_hub

import dlt

@dlt.table(name="bronze_orders")
def bronze_orders():
 """Central ingestion point for all order data."""
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .load("/Volumes/landing/orders/")
)

@dlt.table(name="bronze_customers")
def bronze_customers():
 """Central ingestion point for all customer data."""
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .load("/Volumes/landing/customers/")
)
Spoke Pipeline: Sales Domain
pipeline: sales_domain

import dlt

@dlt.table(name="silver_orders")
def silver_orders():
 """Sales domain transformation of orders."""
 # Read from hub pipeline's output
 return (
 spark.readStream
 .table("shared_catalog.bronze.orders")
 .filter(F.col("order_type") == "SALES")
)

@dlt.table(name="gold_sales_metrics")
def gold_sales_metrics():
 """Sales-specific aggregations."""
 return (
 dlt.read("silver_orders")
 .groupBy("region", "product_category")
 .agg(F.sum("amount").alias("total_sales"))
)
2.2 Federated Pattern
Independent pipelines with cross-pipeline joins:
┌───┐
│ FEDERATED PATTERN │
├───┤
│ │
│ ┌─────────────────────┐ ┌─────────────────────┐ │
│ │ Sales Pipeline │ │ Marketing Pipeline │ │
│ │ │ │ │ │
│ │ bronze_orders ─────┼──┐ ┌───┼── bronze_campaigns │ │
│ │ silver_orders │ │ │ │ silver_campaigns │ │
│ │ gold_sales_kpis │ │ │ │ gold_campaign_roi │ │
│ └─────────────────────┘ │ │ └─────────────────────┘ │
│ │ │ │
│ ▼ ▼ │
│ ┌───────────────────┐ │
│ │ Analytics Pipeline│ │
│ │ │ │
│ │ gold_customer_360 │ (Joins data from │
│ │ gold_attribution │ multiple pipelines) │
│ └───────────────────┘ │
│ │
│ Characteristics: │
│ • Independent domain pipelines │
│ • Cross-domain aggregation pipeline │
│ • Loose coupling through data contracts │
│ │
└───┘
2.3 Layered Pattern
Pipelines organized by medallion architecture layers:
┌───┐
│ LAYERED PATTERN │
├───┤
│ │
│ ┌───┐ │
│ │ BRONZE LAYER PIPELINE │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Orders │ │ Customers│ │ Products │ │ Events │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ SILVER LAYER PIPELINE │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Orders │ │ Customers│ │ Products │ │ Events │ │ │
│ │ │ (clean) │ │ (clean) │ │ (clean) │ │ (clean) │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ GOLD LAYER PIPELINES │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Sales KPIs │ │ Marketing │ │ Operations │ │ │
│ │ │ Pipeline │ │ Pipeline │ │ Pipeline │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ └───┘ │
│ │
│ Characteristics: │
│ • Clear separation by data quality layer │
│ • Bronze/Silver shared, Gold domain-specific │
│ • Easy to add new Gold pipelines │
│ │
└───┘
2.4 Event-Driven Pattern
Pipelines triggered by data events:
┌───┐
│ EVENT-DRIVEN PATTERN │
├───┤
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Source │ ──────▶ │ Event Bus │ ──────▶ │ Pipeline │ │
│ │ System │ │ (Kafka) │ │ Trigger │ │
│ └─────────────┘ └──────┬──────┘ └─────────────┘ │
│ │ │
│ ┌─────────────┼─────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Real-time│ │ Batch │ │ Alert │ │
│ │ Pipeline │ │ Pipeline │ │ Pipeline │ │
│ │(Continuous│ │(Triggered)│ │(Triggered)│ │
│ └──────────┘ └──────────┘ └──────────┘ │
│ │
│ Characteristics: │
│ • Decoupled through events │
│ • Different processing modes for different needs │
│ • Highly scalable │
│ │
└───┘
3. Pipeline Decomposition
3.1 Decomposition Principles
	Principle
	Description
	Example

	Single Responsibility
	One pipeline, one purpose
	Ingestion vs transformation vs serving

	Domain Boundaries
	Align with business domains
	Sales, Marketing, Finance

	Team Ownership
	One team per pipeline
	DataEng owns Bronze, Analytics owns Gold

	SLA Alignment
	Group by latency requirements
	Real-time vs batch

	Scale Independence
	Separate pipelines that scale differently
	High-volume events vs low-volume master data

3.2 Decomposition Decision Framework
def should_decompose_pipeline(current_pipeline):
 """
 Framework for deciding when to split a pipeline.
 """
 indicators = {
 "multiple_owners": current_pipeline.has_multiple_team_owners(),
 "different_slas": current_pipeline.has_mixed_sla_requirements(),
 "large_codebase": current_pipeline.table_count > 50,
 "scaling_conflicts": current_pipeline.has_different_scaling_needs(),
 "frequent_conflicts": current_pipeline.git_merge_conflicts_per_month > 5,
 "long_run_time": current_pipeline.avg_run_time > timedelta(hours=2),
 "complex_dependencies": current_pipeline.dependency_depth > 10
 }

 score = sum(1 for v in indicators.values() if v)

 return {
 "should_decompose": score >= 3,
 "indicators": indicators,
 "score": score,
 "recommendation": get_decomposition_strategy(indicators)
 }

def get_decomposition_strategy(indicators):
 """
 Recommend decomposition strategy based on indicators.
 """
 if indicators["multiple_owners"]:
 return "Split by team ownership boundaries"
 elif indicators["different_slas"]:
 return "Split by SLA requirements (real-time vs batch)"
 elif indicators["large_codebase"]:
 return "Split by domain or data layer"
 else:
 return "Split by logical function (ingest/transform/serve)"
3.3 Decomposition Example
Before: Monolithic Pipeline
Single large pipeline doing everything
@dlt.table(name="bronze_orders")
def bronze_orders(): ...

@dlt.table(name="bronze_customers")
def bronze_customers(): ...

@dlt.table(name="silver_orders")
def silver_orders(): ...

@dlt.table(name="silver_customers")
def silver_customers(): ...

@dlt.table(name="gold_sales_kpis")
def gold_sales_kpis(): ...

@dlt.table(name="gold_customer_metrics")
def gold_customer_metrics(): ...

@dlt.table(name="gold_marketing_attribution")
def gold_marketing_attribution(): ...

50+ more tables...
After: Decomposed Pipelines
Pipeline 1: Ingestion (Bronze)
Owner: Platform Team, SLA: 5 min latency

@dlt.table(name="bronze_orders")
def bronze_orders(): ...

@dlt.table(name="bronze_customers")
def bronze_customers(): ...
Pipeline 2: Core Transformation (Silver)
Owner: Data Engineering, SLA: 15 min latency

@dlt.table(name="silver_orders")
def silver_orders():
 return spark.readStream.table("bronze_catalog.bronze.orders")

@dlt.table(name="silver_customers")
def silver_customers():
 return spark.readStream.table("bronze_catalog.bronze.customers")
Pipeline 3: Sales Analytics (Gold)
Owner: Sales Analytics Team, SLA: 1 hour

@dlt.table(name="gold_sales_kpis")
def gold_sales_kpis():
 return spark.table("silver_catalog.silver.orders")
Pipeline 4: Marketing Analytics (Gold)
Owner: Marketing Team, SLA: Daily

@dlt.table(name="gold_marketing_attribution")
def gold_marketing_attribution():
 return spark.table("silver_catalog.silver.orders")
4. Inter-Pipeline Dependencies
4.1 Dependency Types
	Type
	Description
	Implementation

	Hard Dependency
	Pipeline B requires Pipeline A data
	Unity Catalog tables

	Soft Dependency
	Pipeline B enhanced by Pipeline A data
	Optional joins

	Temporal Dependency
	Pipeline B runs after Pipeline A
	Orchestrator scheduling

	Data Contract
	Pipeline B expects specific schema
	Schema validation

4.2 Managing Dependencies
Pipeline B depends on Pipeline A's output
Use explicit table references through Unity Catalog

@dlt.table(name="enriched_orders")
def enriched_orders():
 """
 Dependencies:
 - sales_catalog.silver.orders (Pipeline A)
 - dimensions_catalog.master.customers (Pipeline C)
 - dimensions_catalog.master.products (Pipeline D)
 """
 orders = spark.readStream.table("sales_catalog.silver.orders")
 customers = spark.table("dimensions_catalog.master.customers")
 products = spark.table("dimensions_catalog.master.products")

 return (
 orders
 .join(F.broadcast(customers), "customer_id", "left")
 .join(F.broadcast(products), "product_id", "left")
)
4.3 Dependency Validation
def validate_dependencies(pipeline_config):
 """
 Validate that all dependencies are available before pipeline runs.
 """
 dependencies = extract_dependencies(pipeline_config)
 validation_results = []

 for dep in dependencies:
 try:
 # Check table exists
 spark.table(dep["table_name"])

 # Check freshness if required
 if dep.get("max_age_hours"):
 last_modified = get_table_last_modified(dep["table_name"])
 age_hours = (datetime.now() - last_modified).total_seconds() / 3600
 if age_hours > dep["max_age_hours"]:
 validation_results.append({
 "dependency": dep["table_name"],
 "status": "STALE",
 "message": f"Data is {age_hours:.1f} hours old"
 })
 continue

 # Check schema if contract defined
 if dep.get("expected_schema"):
 actual_schema = spark.table(dep["table_name"]).schema
 if not schemas_compatible(actual_schema, dep["expected_schema"]):
 validation_results.append({
 "dependency": dep["table_name"],
 "status": "SCHEMA_MISMATCH",
 "message": "Schema does not match contract"
 })
 continue

 validation_results.append({
 "dependency": dep["table_name"],
 "status": "OK"
 })

 except Exception as e:
 validation_results.append({
 "dependency": dep["table_name"],
 "status": "NOT_FOUND",
 "message": str(e)
 })

 return {
 "all_valid": all(r["status"] == "OK" for r in validation_results),
 "results": validation_results
 }
4.4 Circular Dependency Prevention
def detect_circular_dependencies(pipelines):
 """
 Detect circular dependencies in pipeline graph.
 """
 # Build dependency graph
 graph = {}
 for pipeline in pipelines:
 graph[pipeline.name] = set(pipeline.dependencies)

 # DFS to detect cycles
 def has_cycle(node, visited, rec_stack):
 visited.add(node)
 rec_stack.add(node)

 for neighbor in graph.get(node, []):
 if neighbor not in visited:
 if has_cycle(neighbor, visited, rec_stack):
 return True
 elif neighbor in rec_stack:
 return True

 rec_stack.remove(node)
 return False

 visited = set()
 for node in graph:
 if node not in visited:
 if has_cycle(node, visited, set()):
 return True

 return False
5. Orchestration Strategies
5.1 Orchestration Options
	Option
	Complexity
	Features
	Best For

	DLT Native
	Low
	Basic scheduling
	Simple pipelines

	Databricks Workflows
	Medium
	DAG support, retries
	Multi-pipeline

	Airflow
	High
	Full orchestration
	Complex workflows

	Prefect/Dagster
	Medium
	Modern orchestration
	Python-native teams

5.2 Databricks Workflows Orchestration
{
 "name": "daily_data_pipeline",
 "tasks": [
 {
 "task_key": "ingest_bronze",
 "pipeline_task": {
 "pipeline_id": "bronze-pipeline-id",
 "full_refresh": false
 }
 },
 {
 "task_key": "transform_silver",
 "depends_on": [{"task_key": "ingest_bronze"}],
 "pipeline_task": {
 "pipeline_id": "silver-pipeline-id",
 "full_refresh": false
 }
 },
 {
 "task_key": "build_gold_sales",
 "depends_on": [{"task_key": "transform_silver"}],
 "pipeline_task": {
 "pipeline_id": "gold-sales-pipeline-id",
 "full_refresh": false
 }
 },
 {
 "task_key": "build_gold_marketing",
 "depends_on": [{"task_key": "transform_silver"}],
 "pipeline_task": {
 "pipeline_id": "gold-marketing-pipeline-id",
 "full_refresh": false
 }
 },
 {
 "task_key": "data_quality_check",
 "depends_on": [
 {"task_key": "build_gold_sales"},
 {"task_key": "build_gold_marketing"}
],
 "notebook_task": {
 "notebook_path": "/Repos/production/quality/run_quality_checks"
 }
 }
],
 "schedule": {
 "quartz_cron_expression": "0 0 6 * * ?",
 "timezone_id": "America/New_York"
 }
}
5.3 Airflow DAG for DLT Pipelines
from airflow import DAG
from airflow.providers.databricks.operators.databricks import DatabricksRunNowOperator
from datetime import datetime, timedelta

default_args = {
 'owner': 'data-engineering',
 'depends_on_past': False,
 'retries': 2,
 'retry_delay': timedelta(minutes=5)
}

with DAG(
 'dlt_multi_pipeline_dag',
 default_args=default_args,
 description='Orchestrate DLT pipelines',
 schedule_interval='0 6 * * *',
 start_date=datetime(2025, 1, 1),
 catchup=False
) as dag:

 # Bronze ingestion
 ingest_bronze = DatabricksRunNowOperator(
 task_id='ingest_bronze',
 databricks_conn_id='databricks_default',
 pipeline_id='bronze-pipeline-id'
)

 # Silver transformation
 transform_silver = DatabricksRunNowOperator(
 task_id='transform_silver',
 databricks_conn_id='databricks_default',
 pipeline_id='silver-pipeline-id'
)

 # Gold pipelines (parallel)
 build_gold_sales = DatabricksRunNowOperator(
 task_id='build_gold_sales',
 databricks_conn_id='databricks_default',
 pipeline_id='gold-sales-pipeline-id'
)

 build_gold_marketing = DatabricksRunNowOperator(
 task_id='build_gold_marketing',
 databricks_conn_id='databricks_default',
 pipeline_id='gold-marketing-pipeline-id'
)

 # Define dependencies
 ingest_bronze >> transform_silver >> [build_gold_sales, build_gold_marketing]
5.4 Event-Driven Orchestration
def setup_event_driven_orchestration():
 """
 Set up event-driven pipeline triggers using Delta Lake CDC.
 """
 # Monitor bronze tables for changes
 changes = (
 spark.readStream
 .format("delta")
 .option("readChangeFeed", "true")
 .option("startingVersion", "latest")
 .table("bronze_catalog.bronze.orders")
)

 def trigger_downstream_pipeline(batch_df, batch_id):
 """Trigger downstream pipeline when data arrives."""
 if batch_df.count() > 0:
 client = WorkspaceClient()
 client.pipelines.start_update(
 pipeline_id="silver-pipeline-id",
 full_refresh=False
)

 (changes.writeStream
 .foreachBatch(trigger_downstream_pipeline)
 .option("checkpointLocation", "/checkpoints/event_trigger")
 .start()
)
6. Data Contracts
6.1 Contract Definition
data_contracts/silver_orders.yaml
contract:
 name: silver_orders
 version: "2.0"
 owner: data-engineering@company.com
 producer_pipeline: sales-silver-pipeline

schema:
 fields:
 - name: order_id
 type: string
 nullable: false
 description: "Unique order identifier"

 - name: customer_id
 type: string
 nullable: false
 description: "Customer identifier"

 - name: amount
 type: decimal(18,2)
 nullable: false
 description: "Order total in USD"

 - name: order_date
 type: date
 nullable: false
 description: "Date order was placed"

 - name: status
 type: string
 nullable: false
 allowed_values: ["PENDING", "COMPLETED", "CANCELLED"]

quality:
 expectations:
 - name: no_null_orders
 expression: "order_id IS NOT NULL"
 threshold: 100%

 - name: positive_amounts
 expression: "amount > 0"
 threshold: 99.9%

sla:
 freshness: "< 15 minutes"
 availability: "99.9%"

consumers:
 - pipeline: gold-sales-pipeline
 contact: sales-analytics@company.com

 - pipeline: gold-marketing-pipeline
 contact: marketing-analytics@company.com

changelog:
 - version: "2.0"
 date: "2025-01-15"
 changes: "Added status field"

 - version: "1.0"
 date: "2024-06-01"
 changes: "Initial contract"
6.2 Contract Enforcement
def enforce_data_contract(table_name, contract_path):
 """
 Enforce data contract at pipeline runtime.
 """
 import yaml

 with open(contract_path) as f:
 contract = yaml.safe_load(f)

 df = spark.table(table_name)
 violations = []

 # Schema validation
 for field in contract['schema']['fields']:
 if field['name'] not in df.columns:
 violations.append(f"Missing required column: {field['name']}")
 else:
 actual_type = str(df.schema[field['name']].dataType)
 if not types_compatible(actual_type, field['type']):
 violations.append(
 f"Type mismatch for {field['name']}: "
 f"expected {field['type']}, got {actual_type}"
)

 # Quality validation
 for expectation in contract['quality']['expectations']:
 pass_rate = df.filter(F.expr(expectation['expression'])).count() / df.count()
 threshold = float(expectation['threshold'].rstrip('%')) / 100
 if pass_rate < threshold:
 violations.append(
 f"Quality check failed: {expectation['name']} "
 f"({pass_rate:.2%} < {threshold:.2%})"
)

 if violations:
 raise ContractViolationError(violations)

 return True
6.3 Contract Testing in CI/CD
tests/test_contracts.py

import pytest
from contract_validator import validate_contract

class TestDataContracts:

 @pytest.fixture
 def silver_orders_contract(self):
 return load_contract("data_contracts/silver_orders.yaml")

 def test_schema_compatibility(self, silver_orders_contract):
 """Test that table schema matches contract."""
 result = validate_schema(
 "silver_catalog.silver.orders",
 silver_orders_contract
)
 assert result.is_valid, f"Schema violations: {result.violations}"

 def test_quality_expectations(self, silver_orders_contract):
 """Test that quality expectations are met."""
 result = validate_quality(
 "silver_catalog.silver.orders",
 silver_orders_contract
)
 assert result.is_valid, f"Quality violations: {result.violations}"

 def test_freshness_sla(self, silver_orders_contract):
 """Test that freshness SLA is met."""
 last_modified = get_table_last_modified("silver_catalog.silver.orders")
 max_age = parse_duration(silver_orders_contract['sla']['freshness'])
 age = datetime.now() - last_modified
 assert age < max_age, f"Data is {age} old, SLA is {max_age}"
7. Shared Components
7.1 Shared Library Pattern
shared_lib/transformations.py
"""
Shared transformation functions used across pipelines.
"""

from pyspark.sql import functions as F
from pyspark.sql import DataFrame

def standardize_customer_name(df: DataFrame) -> DataFrame:
 """
 Standardize customer name formatting.
 Used by: sales-pipeline, marketing-pipeline, support-pipeline
 """
 return df.withColumn(
 "customer_name",
 F.initcap(F.trim(F.col("customer_name")))
)

def calculate_lifetime_value(df: DataFrame) -> DataFrame:
 """
 Calculate customer lifetime value.
 Used by: analytics-pipeline, marketing-pipeline
 """
 return df.withColumn(
 "lifetime_value",
 F.sum("order_amount").over(
 Window.partitionBy("customer_id")
)
)

def apply_standard_quality_rules(df: DataFrame) -> DataFrame:
 """
 Apply standard data quality transformations.
 """
 return (
 df
 .filter(F.col("id").isNotNull())
 .dropDuplicates(["id"])
 .withColumn("_quality_timestamp", F.current_timestamp())
)
7.2 Shared Expectations
shared_lib/expectations.py
"""
Shared data quality expectations.
"""

STANDARD_EXPECTATIONS = {
 "id_not_null": "id IS NOT NULL",
 "valid_timestamp": "created_at <= current_timestamp()",
 "positive_amounts": "amount > 0"
}

CUSTOMER_EXPECTATIONS = {
 **STANDARD_EXPECTATIONS,
 "valid_email": "email RLIKE '^[^@]+@[^@]+$'",
 "valid_phone": "phone RLIKE '^\\+?[0-9]{10,15}$'"
}

ORDER_EXPECTATIONS = {
 **STANDARD_EXPECTATIONS,
 "valid_status": "status IN ('PENDING', 'COMPLETED', 'CANCELLED')",
 "valid_date": "order_date <= current_date()"
}

Usage in pipeline
from shared_lib.expectations import ORDER_EXPECTATIONS

@dlt.table(name="silver_orders")
@dlt.expect_all_or_drop(ORDER_EXPECTATIONS)
def silver_orders():
 return dlt.read_stream("bronze_orders")
7.3 Shared Schemas
shared_lib/schemas.py
"""
Shared schema definitions for consistency across pipelines.
"""

from pyspark.sql.types import *

ORDER_SCHEMA = StructType([
 StructField("order_id", StringType(), nullable=False),
 StructField("customer_id", StringType(), nullable=False),
 StructField("amount", DecimalType(18, 2), nullable=False),
 StructField("order_date", DateType(), nullable=False),
 StructField("status", StringType(), nullable=False)
])

CUSTOMER_SCHEMA = StructType([
 StructField("customer_id", StringType(), nullable=False),
 StructField("name", StringType(), nullable=False),
 StructField("email", StringType(), nullable=True),
 StructField("created_at", TimestampType(), nullable=False)
])

def validate_schema(df, expected_schema):
 """Validate DataFrame matches expected schema."""
 actual_fields = {f.name: f for f in df.schema.fields}
 expected_fields = {f.name: f for f in expected_schema.fields}

 errors = []
 for name, field in expected_fields.items():
 if name not in actual_fields:
 errors.append(f"Missing field: {name}")
 elif actual_fields[name].dataType != field.dataType:
 errors.append(
 f"Type mismatch for {name}: "
 f"expected {field.dataType}, got {actual_fields[name].dataType}"
)

 return len(errors) == 0, errors
8. Error Handling Across Pipelines
8.1 Error Propagation Strategy
┌───┐
│ ERROR HANDLING STRATEGY │
├───┤
│ │
│ Pipeline A (Bronze) Pipeline B (Silver) Pipeline C (Gold) │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐│
│ │ │ │ │ │ ││
│ │ On Error: │ │ On Error: │ │ On Error: ││
│ │ • Retry 3x │───────▶│ • Check upstream│───────▶│ • Alert team ││
│ │ • Alert if fail│ │ • Retry if stale│ │ • Use stale ││
│ │ • Dead letter │ │ • Skip if cont. │ │ data option ││
│ │ │ │ │ │ ││
│ └─────────────────┘ └─────────────────┘ └─────────────────┘│
│ │
│ Error Types: │
│ • Transient: Retry automatically │
│ • Data Quality: Log and continue with quarantine │
│ • Schema: Fail and alert │
│ • Dependency: Wait and retry │
│ │
└───┘
8.2 Cross-Pipeline Error Handling
def handle_upstream_failure(upstream_pipeline_id, downstream_pipeline_config):
 """
 Handle failure in upstream pipeline.
 """
 client = WorkspaceClient()

 # Check upstream status
 upstream_status = client.pipelines.get(
 pipeline_id=upstream_pipeline_id
).state

 if upstream_status == "FAILED":
 # Get last successful data timestamp
 last_success = get_last_successful_update(upstream_pipeline_id)

 if datetime.now() - last_success < timedelta(hours=24):
 # Data is recent enough, proceed with stale data
 logger.warning(
 f"Upstream pipeline failed, using data from {last_success}"
)
 return {
 "action": "PROCEED_WITH_STALE",
 "data_timestamp": last_success
 }
 else:
 # Data too old, fail downstream
 logger.error(
 f"Upstream data too old ({last_success}), failing pipeline"
)
 return {
 "action": "FAIL",
 "reason": "Upstream data too old"
 }
 else:
 return {"action": "PROCEED"}
8.3 Centralized Error Tracking
Error tracking table shared across pipelines
@dlt.table(name="pipeline_errors")
def pipeline_errors():
 """
 Centralized error tracking for all pipelines.
 Written by error handlers in each pipeline.
 """
 return spark.readStream.table("error_staging.pipeline_errors_raw")

def log_pipeline_error(pipeline_id, error_type, error_message, context):
 """
 Log error to centralized tracking table.
 """
 error_record = {
 "error_id": str(uuid.uuid4()),
 "pipeline_id": pipeline_id,
 "error_type": error_type,
 "error_message": error_message,
 "context": json.dumps(context),
 "timestamp": datetime.now(),
 "resolved": False
 }

 spark.createDataFrame([error_record]).write \
 .mode("append") \
 .saveAsTable("error_staging.pipeline_errors_raw")
9. Deployment Patterns
9.1 Independent Deployment
Each pipeline deployed independently:
.github/workflows/deploy-sales-pipeline.yml
name: Deploy Sales Pipeline

on:
 push:
 paths:
 - 'pipelines/sales/**'

jobs:
 deploy:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3

 - name: Deploy Sales Pipeline
 run: |
 python scripts/deploy_pipeline.py \
 --config pipelines/sales/config.yaml \
 --env production
9.2 Coordinated Deployment
Deploy related pipelines together:
.github/workflows/deploy-all-pipelines.yml
name: Coordinated Pipeline Deployment

on:
 workflow_dispatch:
 inputs:
 environment:
 description: 'Target environment'
 required: true
 default: 'staging'

jobs:
 deploy-bronze:
 runs-on: ubuntu-latest
 steps:
 - name: Deploy Bronze Pipeline
 run: deploy_pipeline bronze ${{ inputs.environment }}

 deploy-silver:
 needs: deploy-bronze
 runs-on: ubuntu-latest
 steps:
 - name: Validate Bronze
 run: validate_pipeline bronze ${{ inputs.environment }}
 - name: Deploy Silver Pipeline
 run: deploy_pipeline silver ${{ inputs.environment }}

 deploy-gold:
 needs: deploy-silver
 strategy:
 matrix:
 pipeline: [gold-sales, gold-marketing, gold-operations]
 runs-on: ubuntu-latest
 steps:
 - name: Validate Silver
 run: validate_pipeline silver ${{ inputs.environment }}
 - name: Deploy Gold Pipeline
 run: deploy_pipeline ${{ matrix.pipeline }} ${{ inputs.environment }}
9.3 Blue-Green Multi-Pipeline
def blue_green_multi_pipeline_deploy(pipeline_group, new_version):
 """
 Blue-green deployment for a group of related pipelines.
 """
 # 1. Deploy all pipelines to green
 green_pipelines = {}
 for pipeline_config in pipeline_group:
 green_config = create_green_config(pipeline_config, new_version)
 green_pipeline = deploy_pipeline(green_config)
 green_pipelines[pipeline_config['name']] = green_pipeline

 # 2. Run all green pipelines
 for name, pipeline in green_pipelines.items():
 run_pipeline(pipeline, full_refresh=True)

 # 3. Validate all outputs
 all_valid = True
 for name, pipeline in green_pipelines.items():
 if not validate_pipeline_output(pipeline):
 all_valid = False
 break

 if all_valid:
 # 4. Switch traffic to green
 for name, pipeline in green_pipelines.items():
 switch_to_green(name, pipeline)

 # 5. Stop blue pipelines
 for pipeline_config in pipeline_group:
 stop_pipeline(get_blue_pipeline_id(pipeline_config['name']))

 return {"status": "SUCCESS", "version": new_version}
 else:
 # Rollback: delete green pipelines
 for name, pipeline in green_pipelines.items():
 delete_pipeline(pipeline)

 return {"status": "FAILED", "reason": "Validation failed"}
10. Monitoring Multi-Pipeline Systems
10.1 Unified Monitoring Dashboard
-- Cross-pipeline health overview
SELECT
 p.pipeline_id,
 p.pipeline_name,
 p.state,
 p.last_update_time,
 TIMESTAMPDIFF(MINUTE, p.last_update_time, current_timestamp()) as minutes_since_update,
 CASE
 WHEN p.state = 'FAILED' THEN 'CRITICAL'
 WHEN TIMESTAMPDIFF(MINUTE, p.last_update_time, current_timestamp()) > 60 THEN 'WARNING'
 ELSE 'HEALTHY'
 END as health_status
FROM pipeline_catalog.monitoring.pipeline_status p
ORDER BY health_status DESC, minutes_since_update DESC;

-- Cross-pipeline data flow metrics
SELECT
 source_pipeline,
 target_pipeline,
 SUM(records_processed) as total_records,
 AVG(processing_latency_seconds) as avg_latency,
 MAX(processing_latency_seconds) as max_latency
FROM pipeline_catalog.monitoring.data_flow_metrics
WHERE timestamp >= current_timestamp() - INTERVAL 24 HOURS
GROUP BY source_pipeline, target_pipeline
ORDER BY avg_latency DESC;
10.2 Dependency Health Monitoring
def monitor_pipeline_dependencies():
 """
 Monitor health of inter-pipeline dependencies.
 """
 dependency_graph = load_dependency_graph()
 health_report = []

 for pipeline, dependencies in dependency_graph.items():
 for dep in dependencies:
 dep_status = get_pipeline_status(dep['pipeline_id'])
 dep_freshness = get_table_freshness(dep['table_name'])

 health = {
 "consumer_pipeline": pipeline,
 "dependency_pipeline": dep['pipeline_id'],
 "dependency_table": dep['table_name'],
 "dependency_status": dep_status,
 "data_freshness_minutes": dep_freshness,
 "sla_met": dep_freshness <= dep.get('sla_minutes', 60)
 }

 health_report.append(health)

 return health_report
10.3 End-to-End Latency Tracking
@dlt.table(name="e2e_latency_tracking")
def e2e_latency_tracking():
 """
 Track end-to-end latency across pipeline chain.
 """
 # Trace a sample of records through all pipelines
 return spark.sql("""
 SELECT
 b.record_id,
 b._ingestion_timestamp as bronze_time,
 s._silver_timestamp as silver_time,
 g._gold_timestamp as gold_time,
 TIMESTAMPDIFF(SECOND, b._ingestion_timestamp, g._gold_timestamp) as e2e_latency_seconds
 FROM bronze_catalog.bronze.orders b
 JOIN silver_catalog.silver.orders s ON b.order_id = s.order_id
 JOIN gold_catalog.gold.order_metrics g ON s.order_id = g.order_id
 WHERE b._ingestion_timestamp >= current_timestamp() - INTERVAL 1 HOUR
 """)
11. Scaling Patterns
11.1 Horizontal Scaling
Add more pipelines for different data partitions:
Template for partition-specific pipelines
def create_regional_pipeline(region):
 """
 Create a pipeline for a specific region.
 """
 return {
 "name": f"sales_pipeline_{region}",
 "configuration": {
 "region_filter": region
 },
 "tables": [
 {
 "name": f"silver_orders_{region}",
 "source": "bronze_orders",
 "filter": f"region = '{region}'"
 }
]
 }

Create pipelines for each region
regions = ["NORTH_AMERICA", "EUROPE", "ASIA_PACIFIC"]
regional_pipelines = [create_regional_pipeline(r) for r in regions]
11.2 Vertical Scaling
Scale individual pipelines based on load:
def auto_scale_pipeline(pipeline_id, metrics):
 """
 Automatically scale pipeline based on metrics.
 """
 current_config = get_pipeline_config(pipeline_id)

 # Calculate required capacity
 records_per_second = metrics['records_per_second']
 target_latency = metrics['target_latency_seconds']

 required_workers = calculate_required_workers(
 records_per_second,
 target_latency
)

 # Update if significantly different
 current_workers = current_config['clusters'][0]['autoscale']['max_workers']

 if abs(required_workers - current_workers) > 2:
 new_config = current_config.copy()
 new_config['clusters'][0]['autoscale']['max_workers'] = required_workers

 update_pipeline(pipeline_id, new_config)

 return {
 "scaled": True,
 "previous_workers": current_workers,
 "new_workers": required_workers
 }

 return {"scaled": False}
12. Case Studies
12.1 E-Commerce Platform
┌───┐
│ E-COMMERCE MULTI-PIPELINE ARCHITECTURE │
├───┤
│ │
│ Sources │
│ ┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐ │
│ │Orders│ │Users │ │Clicks│ │Invent│ │
│ └──┬───┘ └──┬───┘ └──┬───┘ └──┬───┘ │
│ │ │ │ │ │
│ └────────┴────────┴────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ Ingestion Hub Pipeline │ (Real-time) │
│ │ bronze_orders, bronze_users, │ │
│ │ bronze_clickstream, bronze_inventory │ │
│ └───┘ │
│ │ │
│ ┌────────────┼────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Orders │ │ User │ │Analytics│ (Domain Pipelines) │
│ │ Silver │ │ Silver │ │ Silver │ │
│ └────┬────┘ └────┬────┘ └────┬────┘ │
│ │ │ │ │
│ └───────────┼───────────┘ │
│ │ │
│ ┌─────────────┼─────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Sales │ │Marketing│ │ Ops │ (Gold Pipelines) │
│ │ KPIs │ │Analytics│ │Dashboard│ │
│ └─────────┘ └─────────┘ └─────────┘ │
│ │
│ Pipeline Count: 7 │
│ Teams: 4 (Platform, Sales, Marketing, Operations) │
│ SLAs: Real-time (5 min), Near real-time (15 min), Batch (1 hour) │
│ │
└───┘
12.2 Financial Services
┌───┐
│ FINANCIAL SERVICES ARCHITECTURE │
├───┤
│ │
│ Compliance Layer (Separated for Audit) │
│ ┌───┐ │
│ │ audit_pipeline: All data access logged and immutable │ │
│ └───┘ │
│ │
│ Core Banking Trading Risk │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ accounts │ │ trades │ │ positions │ │
│ │ transactions│ │ positions │ │ var_calc │ │
│ │ customers │ │ pnl │ │ stress_test │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │ │ │
│ └────────────────────┴────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ Enterprise Data Warehouse Pipeline │ │
│ │ Consolidated reporting across all business lines │ │
│ └───┘ │
│ │
│ Key Patterns: │
│ • Strict data lineage for regulatory compliance │
│ • Separate pipelines for PII data │
│ • Real-time risk calculations │
│ • End-of-day batch reconciliation │
│ │
└───┘
Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Review
	2025-01-29

	Next Review
	2025-04-29

	Approved By
	Data Architecture Lead

image1.png
#MAST=CH
DIGITAL

